
1

CS 188: Artificial Intelligence
Spring 2010

Lecture 5: CSPs II

2/2/2010

Pieter Abbeel – UC Berkeley

Many slides from Dan Klein

1

Announcements

� Project 1 due Thursday

� Lecture videos reminder: don’t count on it

� Midterm

� Section: CSPs

� Tue 3-4pm, 285 Cory

� Tue 4-5pm, 285 Cory

� Wed 11-noon, 285 Cory

� Wed noon-1pm, 285 Cory

2

Today

� CSPs

� Efficient Solution of CSPs

� Search

� Constraint propagation

� Local Search

3

Example: Map-Coloring

� Variables:

� Domain:

� Constraints: adjacent regions must have
different colors

� Solutions are assignments satisfying all
constraints, e.g.:

5

Constraint Graphs

� Binary CSP: each constraint
relates (at most) two variables

� Binary constraint graph: nodes
are variables, arcs show
constraints

� General-purpose CSP
algorithms use the graph
structure to speed up search.
E.g., Tasmania is an
independent subproblem!

6

Example: Cryptarithmetic

� Variables (circles):

� Domains:

� Constraints (boxes):

7

2

Example: Sudoku

� Variables:

� Each (open) square

� Domains:

� {1,2,…,9}

� Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

Example: The Waltz Algorithm

� The Waltz algorithm is for interpreting line drawings of
solid polyhedra

� An early example of a computation posed as a CSP

� Look at all intersections
� Adjacent intersections impose constraints on each other

?

10

Varieties of CSPs

� Discrete Variables
� Finite domains

� Size d means O(dn) complete assignments

� E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

� Infinite domains (integers, strings, etc.)

� E.g., job scheduling, variables are start/end times for each job

� Linear constraints solvable, nonlinear undecidable

� Continuous variables
� E.g., start-end state of a robot

� Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

14

Varieties of Constraints

� Varieties of Constraints
� Unary constraints involve a single variable (equiv. to shrinking domains):

� Binary constraints involve pairs of variables:

� Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

� Preferences (soft constraints):
� E.g., red is better than green

� Often representable by a cost for each variable assignment
� Gives constrained optimization problems

� (We’ll ignore these until we get to Bayes’ nets)

15

Real-World CSPs

� Assignment problems: e.g., who teaches what class

� Timetabling problems: e.g., which class is offered when
and where?

� Hardware configuration

� Transportation scheduling

� Factory scheduling

� Floorplanning

� Fault diagnosis

� … lots more!

� Many real-world problems involve real-valued
variables…

16

Standard Search Formulation

� Standard search formulation of CSPs (incremental)

� Let's start with the straightforward, dumb approach, then
fix it

� States are defined by the values assigned so far
� Initial state: the empty assignment, {}

� Successor function: assign a value to an unassigned variable

� Goal test: the current assignment is complete and satisfies all
constraints

� Simplest CSP ever: two bits, constrained to be equal

17

3

Search Methods

� What does BFS do?

� What does DFS do?
� [demo]

� What’s the obvious problem here?

� What’s the slightly-less-obvious problem?

18

Backtracking Search

� Idea 1: Only consider a single variable at each point
� Variable assignments are commutative, so fix ordering

� I.e., [WA = red then NT = green] same as [NT = green then WA = red]
� Only need to consider assignments to a single variable at each step

� How many leaves are there?

� Idea 2: Only allow legal assignments at each point
� I.e. consider only values which do not conflict previous assignments
� Might have to do some computation to figure out whether a value is ok

� “Incremental goal test”

� Depth-first search for CSPs with these two improvements is called
backtracking search (useless name, really)
� [DEMO]

� Backtracking search is the basic uninformed algorithm for CSPs

� Can solve n-queens for n ≈ 25
19

Backtracking Search

� What are the choice points?

20

Backtracking Example

21

Improving Backtracking

� General-purpose ideas can give huge gains in
speed:

� Which variable should be assigned next?

� In what order should its values be tried?

� Can we detect inevitable failure early?

� Can we take advantage of problem structure?

22

Minimum Remaining Values

� Minimum remaining values (MRV):

� Choose the variable with the fewest legal values

� Why min rather than max?

� Also called “most constrained variable”

� “Fail-fast” ordering

23

4

Degree Heuristic

� Tie-breaker among MRV variables

� Degree heuristic:
� Choose the variable participating in the most

constraints on remaining variables

� Why most rather than fewest constraints?

24

Least Constraining Value

� Given a choice of variable:
� Choose the least constraining

value

� The one that rules out the fewest
values in the remaining variables

� Note that it may take some
computation to determine this!

� Why least rather than most?

� Combining these heuristics
makes 1000 queens feasible

25

Forward Checking

� Idea: Keep track of remaining legal values for
unassigned variables (using immediate constraints)

� Idea: Terminate when any variable has no legal values

WA
SA

NT Q

NSW

V

26[demo: forward checking animation]

Constraint Propagation

� Forward checking propagates information from assigned to adjacent
unassigned variables, but doesn't detect more distant failures:

� NT and SA cannot both be blue!

� Why didn’t we detect this yet?
� Constraint propagation repeatedly enforces constraints (locally)

WA
SA

NT Q

NSW

V

27

Arc Consistency

� Simplest form of propagation makes each arc consistent
� X → Y is consistent iff for every value x there is some allowed y

WA
SA

NT Q

NSW

V

28

• If X loses a value, neighbors of X need to be rechecked!

• Arc consistency detects failure earlier than forward checking
• What’s the downside of arc consistency?

• Can be run as a preprocessor or after each assignment

Arc Consistency

� Runtime: O(n2d3), can be reduced to O(n2d2)
� … but detecting all possible future problems is NP-hard – why?

29
[demo: arc consistency animation]

5

Limitations of Arc Consistency

� After running arc
consistency:

� Can have one solution
left

� Can have multiple
solutions left

� Can have no solutions
left (and not know it)

What went

wrong here?

31

K-Consistency

� Increasing degrees of consistency
� 1-Consistency (Node Consistency):

Each single node’s domain has a value
which meets that node’s unary
constraints

� 2-Consistency (Arc Consistency): For
each pair of nodes, any consistent
assignment to one can be extended to
the other

� K-Consistency: For each k nodes, any
consistent assignment to k-1 can be
extended to the kth node.

� Higher k more expensive to compute

32

Strong K-Consistency

� Strong k-consistency: also k-1, k-2, … 1 consistent

� Claim: strong n-consistency means we can solve without
backtracking!

� Why?
� Choose any assignment to any variable

� Choose a new variable

� By 2-consistency, there is a choice consistent with the first

� Choose a new variable

� By 3-consistency, there is a choice consistent with the first 2

� …

� Lots of middle ground between arc consistency and n-
consistency! (e.g. path consistency)

33 34

